PHOTOCHEMICAL (2+2)-CYCLOADDITION OF THIOXANTHENETHIONE WITH SOME BUTATRIENE DERIVATIVES

R.G. Visser and H.J.T. Bos^{*}

Laboratory of Organic Chemistry, University of Utrecht,

Croesestraat 79, 3522 AD Utrecht, The Netherlands

Abstract: Irradiation of thioxanthenethione $\underline{1}$ with the alkyl- and alkoxysubstituted butatrienes $\underline{2}a-d$ gives the thietanes $\underline{3}a-d$. Using $\underline{2}d$ the cyclobutanethione $\underline{6}$ is formed as a byproduct. Free radical addition of iC_3H_2SH to $\underline{2}a$ predominantly occurs via terminal attack of the thiyl radical on the π -system.

As an extension of our studies on the photochemical (2+2)- and (4+2)-cycloadditions of thiocarbonyl compounds with acetylenes¹, allenes² and ketenimines³ we have investigated the regiospecificity and the course of the reaction of an excited thione with some cumulated trienes. Thus irradiation of a 0.050 molar dichloromethane solution of xanthenethione <u>1</u> and 200 mol % of butatriene derivatives <u>2</u>*a*-*d* through a K₂Cr₂O₇-filter solution (T<1‰ at λ >525 nm) furnished the 3-(2-methyl-1-propenyl-idene)thietanes <u>3</u>*a*-*d*.

According to ¹H NMR analysis thietanes $\underline{3}a$ -c were obtained in over 90% yield. Isomeric adducts were not detected. Compound $\underline{3}d$ was formed in a yield of about 70% and was contaminated with 15% of an isomeric byproduct (*vide infra*). The thietanes $\underline{3}b$ and $\underline{3}c$ were obtained pure by crystal-lization from CH₂Cl₂-CH₃OH, while thietanes $\underline{3}a$ and $\underline{3}d$ were purified by chromatography (SiO₂/benzene-pentane-ether).

The structure of the thietanes 3a-d followed from their 13 C NMR-, 1 H NMR-, mass- and UV-spectra. For 3b for instance the following spectroscopic data were found:

- ¹³C NMR(CDCl₃): δ 20.1 and 20.4(2xCH₃), δ 27.8 and 75.7(tC₄H₉), δ 58.8(C⁴), δ 74.8(C²), δ 102.9((CH₃)₂C=), δ 104.2(-C³=), δ 123.7-140.6(12 aromatic C), δ 198.6(=C=).
- ¹H NMR(CDC1₃):δ1.18(s,tC₄H₉),δ1.91(s,CH₃),δ1.99(s,CH₃),δ6.07(s,-CHO-),δ7.0-7.5(m,6 aromatic H), δ7.8-8.0(m, 2 aromatic H).

UV(hexane), $\lambda_{max}/nm(\epsilon/m^2.mol^{-1}):297(308,sh),266(1306).$

MS showed amongst others peaks corresponding to $[M^+ - Ar_2C=S], [M^+ - (CH_3)_2C=C=C=CHOtC_4H_9], [M^+ - Ar_2C=C=C=C(CH_3)_2+H], [M^+ - S=CHOtC_4H_9-H].$

Apparently, triplet thioxanthenethione preferably attacks the end of the triene system with formation of the stable biradical $\frac{4}{2}$ from which $\frac{3}{2}$ is formed upon ringclosure.

The isomeric byproduct found starting from $\underline{2}d$ was the cyclobutanethione derivative $\underline{6}$, which structure was deduced from the following NMR data:

¹³C NMR(CDCl₃): δ 22.3 and 25.0(=C(<u>C</u>H₃)₂), δ 24.8(C²(<u>C</u>H₃)₂), δ 61.7(C³, spiro), δ 69.1(C²), δ 125.4-151.3 (12 aromatic C) + 2 vinylic C), δ 252.3(C=S).

¹H NMR(CDCl₃): $\delta0.74(s, 2xCH_3), \delta1.59(s, CH_3), \delta2.56(s, CH_3), \delta7.00-7.60(8 aromatic H).$ The formation of this thione can be rationalized by assuming attack of excited <u>1</u> on C² of the π -system, ringclosure of the biradical thus formed into the thietane <u>5</u> and subsequent rearrangement of <u>5</u> into <u>6</u>; *cf*. ref. 3.

In the literature the regiospecificity of reactions with excited thiones generally parallels that with RS radicals⁴. In order to study this for alkoxybutatrienes we treated 2a under free radical conditions with $iC_{3}H_{7}SH$ and obtained four adducts in yields of 10-40%, which were separated by GLC and identified by spectroscopy:

 $\begin{array}{c} (\mathrm{CH}_{3})_{2} \subset -\mathrm{C\XiC-CHOCH}_{3} & (\mathrm{CH}_{3})_{2} \subset \mathrm{C\XiC-CHOCH}_{3} & (\mathrm{CH}_{3})_{2} \subset \mathrm{C\XiC-CHOCH}_{3} & (\mathrm{CH}_{3})_{2} \subset \mathrm{C\XiC-CHOCH}_{3} \\ & H_{40\%} & \mathrm{SR} & (20\%)^{\mathrm{H}} & \mathrm{SR} & \mathrm{RS} & \mathrm{RS} & (20\%)^{\mathrm{H}} \end{array}$

This result shows that terminal attack of the thiyl radical on this triene system accounts for 70% of the products.

In the case of alkylsubstituted 1,3-butadienes only terminal attack of excited thiones and RS radicals on the π -system has been reported^{5,6,7}.

References

1.a A.C. Brouwer and H.J.T. Bos, Tetrahedron Lett., 1976, 209.

b A.C. Brouwer, A.V.E. George, D. Seykens and H.J.T. Bos, Tetrahedron Lett., 1978, 4839.

2. H.J.T. Bos, H. Schinkel and Th.C.M. Wijsman, Tetrahedron Lett., 1971, 3905.

- 3. R.G. Visser, J.P.B. Baaij, A.C. Brouwer and H.J.T. Bos, Tetrahedron Lett., 1977, 4343.
- 4. A. Ohno in "Organic Chemistry of Sulfur", ed. S. Oæ Plenum Press, New York, (1977), p.220.
- 5. A. Ohno, Y. Ohnishi, and G. Tsuchihashi, J. Amer. Chem. Soc., 91, 5038 (1969).
- 6. H. Gotthardt, Tetrahedron Lett., 1971, 2345.
- 7. A.A. Oswald and K. Griesbaum in "Organic Sulfur Compounds", vol 2, ed. N. Kharasch and C.Y. Meyers, Pergamon Press, New York (1966), p.235.

Acknowledgement

We wish to thank Drs. R.H.A.M. Janssen for his help on the interpretation and calculation of the 13 C NMR spectra.

(Received in UK 10 October 1979)